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INTRODUCTION

We study here Bernstein-type polynomial operators defined for
integrable functions on a simplex 7 in R’ They are generalizations of the
modified Bernstein polynomial operators on L”(0, 1) introduced by J. L.
Durrmeyer in [8] and studied by the author in [5]. We denote by
{(M,), the sequence of those modified operators.

First, we study properties associated with the self-adjointness of M, and
express M, f, for f integrable on 7, as a very simple Fourier-type sum.
Then, we verify the convergence of derivatives of M, f to derivatives of f, a
known property of the classical Bernstein polynomials, and we find the
same rapidity of convergence involving » ~"2. Finally, we prove the con-
vergence of M, f to f belonging to L”(T), in L?(T), for p>= 1 and estimate
the degree of approximation of f by M, fin L?(T). (The statements will be
given in the general case of a simplex of R/, but, to simplify, technical
proofs will be done in the case /=2.)

I. DEFINITION AND FIRST PROPERTIES

DEFINITION.  Let the simplex in R’ be

:
T= {Xz (X1, X0, X)) x,20,i=1,2,.., Z x, < 1}.

=1

The modified Bernstein polynomial of degree #, for a T-integrable function
f, is defined by

M, f(X)= L_ KX, U)f(U)dU  for any XeT,
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where
(i1+/)'
K (/k L Z pnh pﬂh(b
N [ /2] =,
and
Pl X) = —~—"' X1 =gy
Hil |h|
for any # such as || <n (as usual, for = (h,, hy.... h,) in N/ and X =

(X,. X2 x,) in R, we denote
! /
= h, W =hVha ok, Xi=> x, X i ey,
il

ProposiTiON L1 The operator M, has the following properties of
classical Bernstein polynomial operator:
(1) 1t is linear, positive.
(2) It preserves the constants, transforms a function f(X;. Xy,... X;)

dependent only on x,. in a function M, [ dependent only on x,. for
A=1,2,..1

(3) It presertes the degree of polynomials with regard to each variable
when their global degree is < n.

Moreover, the operator M, is self-adjoini: the equality
" Muf( X)dX"'. Mng(X)dX
holds for any f and g in L'(T). (We recall B, XY= s <n PunkX) flh/n),

for XeT.)

Proof.  The property (1) comes from the positivity of the kernel K. The
second one is an immediate consequence of the binomial formula. For the
third one, we use Leibniz’ formula for the derivative DY(XY(| X| + z)") at
the point - =1—|X| (DY is the differential operator

{ l4
(7\‘11 2 Yg; PN (7,\’?/

to obtain the expression of M, f when f(X)= X*

. (n+1)! U q!(q) n! )
M, (X)= i - —— X 1.1
AR (n+1g]+ 1 \Z“ st\s/ (n—1sD)! (1.1)
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where, for the multi-integers ¢ = (¢, ¢5.... ¢;) and s = (s,, 5,,.., 5,), instead
of Zg]':OZg§:O-~~Zg/:0, we denote > Y_, and (4) =q!/si{g — ).

I1. SELF-ADJOINT PROPERTIES

In this part, we study the properties of the operator M, fastened to its
self-adjointness. We denote 2, the space of polynomials of global degree

<m, and Z,, the subspace of #,, orthogonal, for the inner product on
L*(T), to the space &, .

THEOREM 11.1.  For every m =1, the space 2, is an eigensubspace of M,
associated to the eigenvalue

(n+ Dl na!

P = (n+m+ 1) (n—m)!

VRN

ifm<nand 4,,,=0 if m>n.
Consequently, for any integrable function f, M, | can be written

M’l.f: Z ;“II.I)I P"lf; (2'1 )

m=10

where P, f is the “projection” of f on the space 2, (the inner product, on
L*(T), {f. Q>, is continuously defined for any integrable function f and any
polynomial Q).

Proof. We use a property given in [5] for a Hilbert space H, a sub-
space J of H, and a linear operator L on H, such as L(J)<=J and
L*(Jyc J: if a vector V verifies Vé¢J, V L J, L and L* are stable on the
direct sum J@® {V'}, then V is an eigenvector of L.

For every multi-integer g, with |g|=m, we define the polynomial
V,= X%+ W, such that V_is orthogonal to #, |, and W belongs to %, .
We then use the above-mentioned property for H=L*T), L=M,,
J=4, 1, V=V, The eigenvalue associated to the eigenvector V,_ is

obtained as the coefficient of X in the polynomial M (X7) and it is

(n+ ! n!
(n+m+h!(n—m)!

if m<n, zero if m>n.

As this eigenvalue depends only on |g|=m, and as the polynomials V',
when ¢ runs on the multi-integers such as |g| =m span 2,,, this space is an
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eigensubspace of M. Let us denote ~,,,, the eigenvalue of M, associated to
2, and take Q,,., k=1,2,.., m, an orthonormal system spanning 2, .
Since the global degree of M, f is not greater than n, we have, for any
integrable function f, a decomposition

iz2n

Mnf‘: Z Z :uk.m(f.) Qk.m'

m=0 k=0

ertlng <Mnf’ Q/\'Jn > = ;“ra,r11<.f; Q/\'_m> = ul\:m(/.)ﬁ we COHCIUde that (21)
holds for any f. (m, is the number of multi-integers ¢ such as |g| =m.)

IIT. CONVERGENCE OF PARTIAL DERIVATIVES

We prove in this part the convergence of partial derivatives of M, f to
partial derivatives of f (when they exist), a well-known property for
classical Bernstein polynomials (cf. for [0, 1]°, P. L. Butzer [3]).

TueoreM L1, If the function [ has a continuous partial derivative D, f
on T, then:

(1) sup| DM, f(X)| <sup|D/(X)]. (3.1)
XeT Xel
(i) sup | DM, f(X)— Df(X)|
XeT
SCyw(DYfon )+ Con sup | DYf(X)]. (3.2)
YeT

where w(g,0) is the value of the modulus of continuity of the continuous
function g in 6> 0, and C |, C, are two constants dependent only on q and .

Proof. (in the case /=2). If f'is integrable on T and n>|q|, we have
the first expression for Xe T:

Dan./‘(X):an.q Z [7:1 |q|,ll(X)J (Al)wiDq(pn+L(/Ur+q(U))f'(L,) dl”v
|h+qgl<n T

(3.3)

where to simplify the writing we denote

n! (n+2)!
(n+ g (n—1ql)

an,q =
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We obtain this expression, reasoning by recurrence on ¢, and ¢, and
using the relation for h, =1, |h|<n—1, XeT:
¢
xpmlz|‘}11(X) = n(pn ih) l,hz(X) —Pn I.h].hg(X))s
X

and the similar one about the variable x,.

Then if fowns a continuous partial derivative DY on T, we use Green's
formula in (3.3); there appear curvilinear integrals which are zero, so we
have the second expression for any Xe T

DM ()=, Y PuiaX) | P V) DYV AU, (34)

|[h+qgl<sn

To prove (3.1), we use then the binomial formula to get, for any Xe T,
the identity:

Z pn——\q\.h(X):l (35)

th+qgl<n

and the inequality a,, (n+|g| +2) '"(n+|g|+1) '<1 for any n, ¢ such
as [gl<n.

To prove (3.2), we write for any Xe 7"
| DM, f(X) = Df(X)]
<= (n+lgl+2)(n+1ql+ Da, | | DM, f(X)]
+ln+1gl+2)(n+ g+ Da,, DM, f(X)=Df(X)].  (3.6)

ny

"y

As | DM, f(X) does not exceed sup, . |D(U)|, and as there exists a
constant C,, dependent ounly on ¢ such as |[l—(n+]|g|+2)
(n+|q|+ l)a,,jq‘ | < C,/n, we have only to consider the last term of the
inequality (3.6).

In a well-known way, with the help of the modulus of continuity (cf.
C. Coatmelec [4]) and using the relation (3.5), we get for any Xe T:

[(n+1gl+ 1) (n+lql+2)a,, DM, f(X)—DY(X)]

ny

Sln+lgl+D+1gl+2) Y pooaX)

| h+qgl<n
| Pusgrns (U DI(U) = DUf(X)| dU
Jr

<D, 1+ ‘(n+lgl+1)(n+]gl+2)

< T Pl | P AUNU= X AU,

Ihtglsn
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where | --- || is the euclidean norm on R” and the positive real number & is
to be precised later.
We compute for any X = (x,, x,}e T and i=1, 2:

Z pn \q\.h(X)J7<pr1+\q|‘/1$</((/’v) (lll—"vl)z d[j

h+yqglsn

__(n+1q])!
(n+1ql+4)!

{2nx,(1 —x) + [x}(4]q]” + 16]¢] + 12)

So, with the help of Cauchy-Schwarz inequality for the sums and for the
integrals we have

(n+lgl+1){n+g|+2)

: (n+7,
X Pl pag X U= X AUS (=),

[+ qisn

where 7, is twice the greatest value, for x,e[0, 1], of the terms under
bracket in (3.7).
We take now d =n '? and we obtain that the last term of the inequality

(3.6) is bounded by C,w( D%, n '?) where C,=2+7y!2.

‘g
IV. CONVERGENCE IN L?(T)

In this part, we prove the convergence of M, f to f in L?(T) for any
e L(T), p= 1. We give an estimate of the degree of approximation of f by
M, f with the help of the modulus of smoothness of f defined for 6 >0 by

w,(/.8)= sup ( | l./‘(X+h)./'(X)Ide>"’”,
Vhi<o Ty
where T, = {X|(X, X+ h)e Tx T}.
First, we deal with the problem on the space C'(T) of the continuous

functions with continuous first derivatives.
Then the Peetre-# -functional of the function fe L”(T) defined by

jp(”f) = i(nq{,” {“fgll.,.(’l') +1 Z I Dng/,p( r)}
we lgl=1

will allow us to enlarge the result to the whole L”(T), for 1 <p< o, and to
continuous functions for p = oo, since the functional .#,(¢, /') is “equivalent”
to w,(f, 1).

PROPOSITION [V.l.  The operator M, is a contraction on L”(T) for p>1.



BERNSTEIN-TYPE POLYNOMIALS ON A SIMPLEX 161

Proof. For p=oc, the result comes from constant preserving property
of M, and for p=1, in addition, through the self-adjointness of M, . The
general case is then established with the Riesz convexity theorem (cf.
N. Dunford and J. T. Schwartz [7]).

THEOREM IV.1.  For any p, | <p< 0, and for any f € C'(T), we have the
estimate || M, f—fllniry <Con 2%, 2 WD |l o1y, where C, is a con-
stant dependent only on p and .

Proof. (in the case /=2). Since M, preserves the constants, we have for
any fe C'(T) and any Xe T:

| M, f(X)—f(X)] <LK,,(X, U)1A(U)—f(X)| dU. (4.1)

We begin by the case p= .
For any X and U in the simplex 7, we get
1af

* i‘ 0x,

) —1(X) | < (a g
Xy

>1X—U!~ (4.2)

L(T) L*T)

Using the computation (3.7) for ¢, =¢, =0, we have
sup [ K,(X, U) [ X=U|P<n " (43)
XerT T

Summing up the inequalities (4.1), (4.2), and (4.3), after using
Cauchy Schwarz inequality we obtain

. S ef Lof i
WMo f=fle<n ‘"2<— + == )
L | éx, Lt 10X o

We deal now with the case | < p< .
Splitting the set of integration in order to stay in 7, we use Holder
inequality, symmetricity of K,,, and (4.1) to obtain

WM~y <2 <”

T<xT

KX, U) 1Sty ) — f (. ) |7 dU dX)

- Lip
2[R0 S dvax) L
TxT
Introducing the function on [0, 1], ¢(u,,s x;)=1 if u, <s<x, or
Y, <s<uy, dlu,,s, x,)=0 elsewhere, we write, for any (u,, u,, x,) with
(uy,us)eT, (x,,u)eT:

V] of
[f(ay, un)—flxy, un)] < fuy ‘»“1'1 b <L %(5» u,)
Xy

14 1'p
duy, s, xy) ds> .
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So, we obtain

| KX U g a) = £, ) 7 dU X

ek T

< ( ]
!

X sup U KX, U) [, —x, |7 By, s, x,) dX du,. (4.5)

(scuye T YT x[01 -]

of ’
‘\. (S" “2)
X

ds du3>

Let 0 be a positive real number which will be precised later (< 1). For
any XeT and (s,u,)eT, we split the integral [§ “|u,—x,|" '
@é(u,, s, x;)du, in two integrals according to |u, —s| <é or not, to bound
it by

| h=x 7 s lugsox ) duy
0, N

y
|

I 7R
+} Ly, — X, 72wy, —s|” " P hluy, s, x,) duy, (4.6)

"()\,ll [

where the integer r is defined by r< p—1 <r+ L.
Hence, for any (s, u,)e T and Xe T we have

I KX, UY = 3,17 gy s, x,) dX du,

YT [0 )

) R
<<‘ Ly =17 " " Pluy, s, x,) duy)

YO uyp - s|<o

~

x sup | K(X,U)juy—x," " dX
wel0 w7l

+(l luy—sl|” '.";¢(U1-,-\'~,-\'|)d“1)
YNy a0 /

X sup . KX, U)lu,—x,|""7dX
me 0.1 w]'T

SOr T N p—r—1) Y+ 1)+67 7 Ap—r=2) ' (r+2), (47)
where &, (r)=sup,.r |, KX, U) [} U~ X" dX.
We need now a result of the next Proposition IV.2 there exists a con-
stant C(r), independent of #, such as &,(r) < C(r)n~ 7.
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So, the right side of (4.5) is bounded by
o

Ox,

(5/;—r—ln (r-}]],ZC,f?(l_i_(Srln l’2)’

1rTy

E

where (), is a constant dependent only on p.

We choose 6 =n "7 and we get
~ . . ’ (’?/ K& 12
| KX U) 1y 1) = [, )7 dU dX <2C, | = ) P2 (48)
Yrer CX ey

In the same way, we obtain
. '?f r
J' K (X, U) [f(xy, up) = f(xy, x2) |7 dX dU <2C, | n " (4.9)
YIx T X ey

Summing up the inequalities (4.4), (4.8), and (4.9), it comes

| o of )

| Cx, CX,
For the proof in the case p=1, we proceed in the same manner.
The inequalities (4.4) and (4.5) are still true and the integral
|6 é(u,, s, x,) du, is bounded by

” Mmf‘,f“[j'(,r) < C,,n - 172 (

LAT)

) bow 2 2
J oluy, s, x,)dul+( (u,—x) (u,—s) “@lu,, s x,)du,.
|1y s|<d YOup - s >3

(4.6)

Then, we continue as for p> 1, and the term of the right side in (4.5) is
less than

o |

-

0x,

5/\

2 ‘ 4.7y

0+ 'nm Hg

L)

Then we conclude as above for p> 1.

Remark. Using an argument of convexity, we could get the property for
1 <p< oo as a consequence of the property for p=1 and p= co.

PrROPOSITION IV.2.  For any integer r, we have the estimate

sup J K(X.U)|X=U|"dU=0(n" ).

Xer*T
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Proof {({=2). We denote, for i=1, 2 and an integer r,
SundX)= | KX U) (x,=u) dU.
T

We prove, in the same way as in [5, p. 328], computing (¢/dx,) S, , (X).
the tdentity

~

(rtn+3)S,,, AX)=x(1—-x,) LZrS,,_, LX) — Tf'\-s,,‘,.,.()()}
pa

s}

— ((] —2.\'1) (r+ l)_xt)Sn.r.l(X)'

Reasoning by recurrence on r, we verify that §,,,(X), which is a
polynomial in x; of degree r, is a rational fraction in n of degree —r/2 if r is
even, of degree — (r + 1)/2 if r is odd. Then, the result follows with the help
of Cauchy-Schwarz inequality.

Remark. Theorem IV.1 1s still true if / belongs to Sobolev space
W, (T). Indeed, C'(T) is dense in W, (T) and M, is a contraction on
L7(T). (the definition of W, (T) is recalled next.)

THEOREM 1V.2.  Let there be 1 <p < oo, for any fe L7(T), the sequence
M, f converges to f in LP(T), and

WM, f—fipny S Cpo,(fin 12).

Proof (I=2). Let there be f, a function belonging to L”(T), p=1. For
any g in C'(T), since M, is a contraction in L7(T), we write

My f=Fl iy <IMug =gl + 21/ =&l
Using Theorem 1V.1, this quantity is bounded by

C,,n 112 Z HDngLﬂ(T)+ZHf*gHU('I']’

gl =1

which is not greater than (24 C,)#,(n "2 f) where %, is Peetre-# -
functional. Now, we use the well-known result for a Lipschitz-graph
domain (see H. Johnen and K. Cherer [9]):

H (1, )< Clew (/. 1).

So we obtain our main desired result.

Remark. The last result is natural and expected; indeed, the degree of
approximation corresponding to Bernstein-Kantorovic polynomials of
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degree n in L7(0, 1) 1s indicated by H. Berens and R. A. DeVore in [2]. It
is w,(f,n" ") for any function f'in L7(0,1).

Now let us introduce W, ,(T), Sobolev spaces of functions fe L”(T) with
derivatives D¥f (in the distributional sense) belonging to L(T), |¢| <d,
endowed with the norm

Hfldip=< > DI, r,> g
!

gl =d
PROPOSITION [V.3.  The two assumptions are equivalent for p>1:

(1) fisin W, (T),
(2) WM, flla,is uniformly bounded.

Proof. (I=2). First, let us suppose (1) is true.
Using the density of the space Z(T) of infinitely differentiable functions
on T with compact support, in W, (T), we show that the expression of

DM, f. (3.4), falls for any fin W, (T)if |g|<d and |¢]| <n.
Then Holder inequality and binomial formula lead us to

n! (n+2)!
(n+1gD!(n—lgl+2)

IDM, [l iy < ID M oy SZND US| 1o

So, M, fllu, <20 fls, This inequality is still true if p=1.

Conversely, let us suppose | M, fl,,is uniformly bounded. Since M, f
converges to fin L'(T), for |q| <d, DM, f converges to D‘f in the dis-
tributional sense. Then, %(7T) being dense in LYT), 1/p+1/g=1, and
I M, fll,, being bounded, DM, fis a weak Cauchy sequence in L”(T). So
its limit is in L7(T).

COROLLARY. For any fin W, (T), p =1, the sequence M, [ converges to
fin W, (T

d.p

Proof. 1t is a consequence of Theorem III.1 and of the first implication
of Proposition 1V.3 for p > 1, via the density of #(T) in W, (T).
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