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INTRODUCTION

We study here Bernstein-type polynomial operators defined for
integrable functions on a simplex T in [Rt. They are generalizations of the
modified Bernstein polynomial operators on £1'(0, 1) introduced by J, L.
Durrmeyer in [8] and studied by the author in [5]. We denote by
(Mn)n;:, I the sequence of those modified operators,

First, we study properties associated with the self-adjointness of M n and
express M,j, for f integrable on T, as a very simple Fourier-type sum.
Then, we verify the convergence of derivatives of M,j to derivatives of f, a
known property of the classical Bernstein polynomials, and we find the
same rapidity of convergence involving n -1/2. Finally, we prove the con­
vergence of Mnf to f belonging to £1'( T), in £1'( T), for p ~ I and estimate
the degree of approximation off by MJ in U( T). (The statements will be
given in the general case of a simplex of [RI, but, to simplify, technical
proofs will be done in the case 1= 2.)

I. DEFINITION AND FIRST PROPERTIES

DEFINITION. Let the simplex in [Ri be

T= {x = (Xl' X 2 ,···, XI) IXi ~ 0, i = 1,2, ... , l;± Xi"; I}.
1= I

The modified Bernstein polynomial of degree n, for a T-integrable function
I; is defined by

M,J(X) = LK I1(X, U)f( U) dU
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for any XE T,
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where

and
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n'
/) (X)= . XII(I-IXI)" III!

"iI h!(n - Ihi)!

for any h such as Ihi~n (as usual, for h=(h l ,h2 , ... ,hl ) In N I and X=
(XI' X>, ... XI) in 1M I, we denote

I

Ihl = Ih"
, I

I

IXI=Ix"
, I

PROPOSITIO~ 1.1. The operator Mil has the FJl!o\l'ing properties ot
classical Bernstein polynomial operator:

( 1) It is linear, positive.

(2) II preserl'es Ihe conslmlls, transforms a jimclion f(x l , XC"," XI)

dependelll Oll!r 1111 X;" ill (/ jill1ctioll ;l,{J dependelll on!r on X k , jill'
k = 1,2, .... 1.

(3) It preserves the degree otpolynomials with regard to each variable
when their global degree is ~ n.

Moreover, Ihe operalOr Mil is sclf~adjoinl: Ihe equalily

r M,J(X)g(X) dX = I. fIX) M/1g(X) dX
. , • I

holds jiJr any f and g in L I (T). (We recal! B,J(X) = Lilli,; II PIIII(X) f(h/n),
for X E T.)

Proof The property (I) comes from the positivity of the kernel K/1' The
second one is an immediate consequence of the binomial formula. For the
third one. we use Leibniz' formula for the derivative D4(X4(1 XI + :::)/1) at
the point::: = 1 - I X I (D4 is the differential operator

:. I ({ ,

<"X'(1 <".~r ... aXiJ

to obtain the expression of M,J when fIX) = X":

. (n+I)! 'I ql (q) nl .,
M ,) (X) = \! I -:I. . I X ,

(n + I q I + I,., 11'\ . .\ (n - I .\ I ).
( 1.1 )
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where, for the multi-integers q = (qj, q2"'" ql) and .I' = (.1'1' .1'2'"'' .1'1), instead
of "'q, ",q,. . .. "'q, we denote "'." and (q) = q,;II"(q - I')'L.,..SI=OL.,..,\,~=o L.,..s/=O' L\,=o, s ok. , ••

II. SELF-ADJOINT PROPERTIES

In this part, we study the properties of the operator M,l' fastened to its
self-adjointness. We denote ;~II' the space of polynomials of global degree
~ m, and :?2m , the subspace of ;~II' orthogonal, for the inner product on
L 2( T), to the space i~n I'

THEOREM ILl. For every m?, 1, the space dm is an eigensubspace oj'M II

associated to the eigenvalue

(n + l)! n!
)~nJ" == --...:...--...:...----

(n+m+l)! (n-m)!

ij'm 'S nand ;'n.m = 0 if m > n.
Consequently, for any integrable function f, M,,f can be written

II

Mn.f == L ;~n,mPmj~
n/=()

(2.1 )

where Pmf is the "projection" oj'f on the space 12m (the inner product, on

e( T), <f, Q), is continuously defined for anv integrable function f and any

polynomial Q).

Prool We use a property given in [5] for a Hilbert space N, a sub­
space J of H, and a linear operator L on H, such as L(J) c J and
L*(J) c J: if a vector V verifies V ¢ J, V 1- J, Land L * are stabk: on the
direct sum J (J) { V}, then V is an eigenvector of L.

For every multi-integer q, with Iq I= m, we define the polynomial
V" = xq + Wq such that Vq is orthogonal to ~II . 1 and W" belongs to '~II I'

We then use the above-mentioned property for H = L 2( T), L = Mil'
J = !~II I' V = Vq . The eigenvalue associated to the eigenvector V" is
obtained as the coefficient of xq in the polynomial M

II
( X'I) and it is

(n+l)! n!

(n + m + l)! (n - m)!
if m ~ n, zero if m > n.

As this eigenvalue depends only on Iq I = m, and as the polynomials Vq

when q runs on the multi-integers such as Iq 1= m spandm , this space is an
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eigensubspace of M". Let us denote i.",,,, the eigenvalue of M" associated to
}l", and take Qk,,,n k = I, 2, __ ., m/, an orthonormal system spanning d,w
Since the global degree of M"f is not greater than n, we have, for any
integrable function t: a decomposition

1/ fll,'

M,J= I I flk",cf)Qk""
J1l () k ----,0

Writing <M"f; QkJ") = i'''Jn<t; Qk",) = flk",(j), we conclude that (2.1)
holds for any f (m l is the number of multi-integers q such as Iq I = m.)

III. CONVERGENCE OF PARTIAL DERIVATIVES

We prove in this part the convergence of partial derivatives of M nf to
partial derivatives of f (when they exist), a well-known property for
classical Bernstein polynomials (cf. for [0, Ir, P. L. Butzer [3]).

THEOREM II 1.1. If the function f has a continuous partial derivative D,J
on T, then:

(i) supID'{M,J(X)I~supID'{f(X)I.
.t~l· ~EJ

(ii) supID'IM,J(X)-Dqf(X)1
XET

~Clw(D'lt;n L2)+C,n I supID'If(X)I,
rc T

(3.1 )

(3.2)

where w(g,6) is the value of the modulus of continuity of the continuous

function g in 6> 0, and C 1 , C2 are two constants dependent only on q and I.

Prool (in the case 1=2). Iff is integrable on Tand n~lql, we have
the first expression for X E T:

D'IM,J(X) = a",q I p" Iql.l,(X) L(-1 )lq'D'I(p" + l'/lh+q( V))f( V) dV,
Iii + ql ~ f1

(3.3 )

where to simplify the writing we denote

n! (n +2)!
a =-------
'''I (n + Iq I )! (n - Iq I )! .
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We obtain this expression, reasoning by recurrence on q I and ql and
using the relation for hi ~ 1, Ihl ~n-I, XE: T:

and the similar one about the variable Xl'

Then iff owns a continuous partial derivative D'il on T, we use Green's
formula in (3.3); there appear curvilinear integrals which are zero, so we
have the second expression for any X E: T:

r

D'IM,,/(X) = an.'I I Pn-I'II.h(X) J PlI + 1</I.h + '1( U) D'Ij'( U) dUo (3.4)
Ih + 'II ~ n l

To prove (3.1), we use then the binomial formula to get, for any XE: T,
the identity:

I PlI I<IIJ,(X) = I
111+(/1 ~f1

(3.5)

and the inequality an)n + Iq I+ 2) I (n + Iq I+ 1) I ~ I for any n, q such
as Iq I~ n.

To prove (3.2), we write for any XE: T:

ID'IM,,/(X) - D'I((X) I

~ 11 - (n + Iql + 2)(n + Iq 1+ 1) an,/ I ID'IM,,/(X) I

+ I(n + Iql + 2)(n + Iql + I) a'~'I1 D'IM,J(X) - D'Ij'(X) I. (3.6)

As \D'IM,J(X) does not exceed sUPu£TID'Ij'(U)I, and as there exists a
constant C l , dependent only on q such as 11-(n+lql+2)
(n + Iq I + 1 )a n:'1] I~ C lin, we have only to consider the last term of the
inequality (3.6).

In a well-known way, with the help of the modulus of continuity (cf.
C. Coatmelec [4 J) and using the relation (3.5), we get for any X E: T:

I (n+ Iql + I) (n+ Iql +2) an''1
1 D'IM,,/(X)-D'I((X) I

~(n+lql+I)(n+lql+2) I Pn I'IIJ,(X)
Ih + 'II ~ 1I

X r PlI+!</lh+</(U) ID'Ij'(U)-D'II(X)1 dU
, T

~W(D<lf; 6) [I +6 I(n+ Iql + I) (n+ Iql +2)

x I Pn
I II t '! I ::S f1

I'/IJ,(X) f Pn+ 1'Ilh+'I( U)II U - XII dUJ,
l
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where II ... II is the euclidean norm on IR" and the positive real number 6 is
to be precised later.

We compute for any X= (X\, X2)E T and i= 1, 2:

!II +(/1
PII Iql.l'(X) r PII+lql.h+II(U) (u,-x,)"dU

n ., T

(n+ Iql)! I ))
(n + Iq 1+ 4)! l 2nx i( 1-\" i) + [Xi (41 q 1- + 161 q 1+ 12)

-2xi(!ql(2q,+3)+4(qi+1))+(q,+I)(q,+2)]}. (3.7)

So, with the help of Cauchy-Schwarz inequality for the sums and for the
integrals we have

(n + Iq 1+ 1) (n + Iq 1+ 2)

. /n+" )
x I PII IIII.h(X) JPn+ Illh+4(X) II U - XII dU:::;; ( ,/4,

I h + ({ 1/ I \

where ~"I is twice the greatest value, for Xi E [0, 1], of the terms under
bracket in (3.7).

We take now 6 = n 1/2 and we obtain that the last term of the inequality
(3.6) is bounded by C\ W(D4f; n II") where C j = 2 + }'~:2.

IV. CONVERGENCE IN U( T)

In this part, we prove the convergence of M nf to f in U( T) for any
fE U( T), p? 1. We give an estimate of the degree of approximation off by
M,J with the help of the modulus of smoothness off defined for () >°by

wI'U;6)= sup(J If(X+h)-f(X)IPdX)L'I',
Iltl ~ () Iii

where Th={XI(X,X+h)ETxT}.
First, we deal with the problem on the space C'(T) of the continuous

functions with continuous first derivatives.
Then the Peetre-.'x-functional of the function fE U( T) defined by

.ill'(tJ)= inf {llf-gIIJln+ t I IIDqgIIJ.ln}
gc ('liT) r I11I ~, p

will allow us to enlarge the result to the whole LP( T), for 1 :::;; p < eXJ, and to
continuous functions for P = 00, since the functional .~(tJ) is "equivalent"
to wI'U; I).

PROPOSITION IV.I. The operator AlII is a contraction on LP( T) j(Jr p? 1.
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Proal For p =X, the result comes from constant preserving property
of M" and for p = 1, in addition, through the self-adjointness of M". The
general case is then established with the Riesz convexity theorem (d.
N. Dunford and J. T. Schwartz [7J).

THEOREM IV.l. For any p, 1~p ~ 00, andfor any f E C'(T), we have the
estimate II M,J-flluIT) ~ Cpn 1/2 LI41 ~ I II D4fllu(T)' where C" is a con­
stant dependent only on p and l.

Proal (in the case 1= 2). Since M" preserves the constants, we have for
anyfEC'(T) and any XE T:

IM,J(X)-f(X) I~f K,,(X, U) If(U)-f(X) I dUo (4.1)
T

We begin by the case p = 00.

For any X and U in the simplex T, we get

If(U)-f(X)I~(!I:}fll +11 "of II )IIX-UII. (4.2)
,ex l !-"IT) II uX 2 UIT)

Using the computation (3.7) for q! = q2 = 0, we have

(4.3)

Summing up the inequalities (4.1), (4.2), and (4.3), after usmg
Cauchy Schwarz inequality we obtain

• . '12 (II of II Ii cf Ii )II M".f -.I II L' (/) ~n' - + 1-' .
10xlu(T) jox 2 luIT)

We deal now with the case I < P < JJ.

Splitting the set of integration in order to stay in T, we use Holder
inequality, symmetricity of K", and (4.1) to obtain

II M,J-fll UiTI ~ 2 (ff
TX

T K,,(X, U) If(u" u2 ) -f(x l, U2) II' dU dX)'''

+2 (ff
lx

IK,,(X, U) If(x l , u2 ) -f(x l , x 2 ) I" dU dX)'1'. (4.4)

Introducing the function on [0, Ir, r/J(ul,s,xl)=1 if UI~S~XI or
x,~s~u" r/J(u"s,xl)=O elsewhere, we write, for any (U I ,U2'X,) with
(u" U2 )E T, (x" U2 )E T:

( II af I" )IPIf(u"u2)-f(x"u2)1~lu!-x,11 III' I ~(S,1l2) r/J(u\>s,xJlds .
() (XI
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So, we obtain
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rr K I1 (X, V) If(u l , 112) -f(x
"

U2W dV dX
",'" Tx 1

x sup ff KI1(X,V)lu,-xlll'l</J(ul,s,xddXdul' (4.5)
(s. u~) E l" I x r0,1 - IQ 1

Let 6 be a positive real number which will be precised later (6 < I). For
any X E T and (s, U2) E T, we split the integral S0 - U? lUI - xIII' I

</J( U I' .I, X I) du 1 in two integrals according to lUI - s I < 6 or not, to bound
it by

f II? lul-x,I,+llu,-sll' ,2</J(U I ,S,x l )dul
o U

1

," I /I"+1 .. lu l -x , I,+2Iu , -.I·II" 3</J(U I ,S,x l )du l ,
"0111

1
\>,j

where the integer r is defined by r ~ p -I < r + I.
Hence, for any (.I, u2 ) E T and X E T we have

rr K I1(X,V)lu , -x , 11' 1 </J(U"S,X,)dXdu ,
•• Tx [0.1 u, I

< ( ..I'I)I,/("?~ . I U I - s I I' ' 2 </J( U 1 ' .I, XI) du 1 )
\-1 <I)

x sup rK(X,V)lul-xll,tldX
111 E rO,l "::.1"!

(4.6)

I . II' ,. 3 A. ( . -) I )UI -.1 If' UI' .1, XI (U 1
,) ,

x sup r.K(X,V)lu,-xll,t2dX
u(E[O.1 U?]·/

~61' ' I(p-r-l) 1~I1(r+I)+(5P , 2(p-r-2) l~n(r+2), (4.7)

where (,,(r) = supUc r ST K I1 (X, V) II U - XII' dK
We need now a result of the next Proposition IV.2 there exists a con­

stant C(r), independent of n, such as ~,,(r) ~ C(r)n ,/2
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So, the right side of (4.5) is bounded by

where C;, is a constant dependent only on p.
We choose 15 = n l/2 and we get

," II elll'IJK,,(X, V) If(u l , U 2 ) -f(x l , u21" dV dX ~ 2C~ ~ I. 11 ".2
• IxI (XI U(T)

In the same way, we obtain
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(4.8)

H K,,(X, V) If(x j , u2 ) -f"(x l , X2) I" dX dV ~ 2C~ II. a~·.II" n 1,2 (4.9)
'IxI aX 2 UITI

Summing up the inequalities (4.4), (4.8), and (4.9), it comes

1/2 ('II alii II (Y II )IIMJ-fIIIJ'(T)~CI,n -~- + -:;- .
I eX j UIT) (X 2 ,IJ'IT)

For the proof in the case p = 1, we proceed in the same manner.
The inequalities (4.4) and (4.5) are still true and the integral

H-U'¢(uj,s,xl)du j is bounded by

J ¢(uj,s,xIlduj+C x, (ul-xY(uj-s) 2¢(U I ,S,x l )du j .
lUI sl«) "'OIUI "1>;)

(4.6 )'

Then, we continue as for p> 1, and the term of the right side in (4.5) is
less than

211 ~all'l (15 + 15 In I) ~ 4n 1.211 elli (4.7)'
OX j LilT) exlliL'IT)'

Then we conclude as above for p> 1.

Remark. Using an argument of convexity, we could get the property for
1 < P < CD as a consequence of the property for p = 1 and p = 00.

PROPOSITION IV.2. For any integer r, we have the estimate

sup j' K,,(X, V) II X-VII' dV = O(n" r.2).
XET T
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Proof (! = 2). We denote, for i = 1,2 and an integer 1',

5 I1r• i(X) = f K I1 (X, U) (x, - u,l' dU.
T

We prove, in the same way as in [5, p. 328J, computing (a/<3x,)5 11 •r.z(X),
the identity

(I' + n + 3)511,,+ I)X) = x;(l - x,) 12 1'5111 li(X) - {-511 •r)X)lL 1.\, J
- ((I - 2x;) (I' + I) - x,)5 11 •r•z(X).

Reasoning by recurrence on 1', we verify that 5 11 •1 ) X), which is a
polynomial in Xi of degree 1', is a rational fraction in n of degree - 1'/2 if r is
even, of degree - (I' + I )/2 if I' is odd. Then, the result follows with the help
of Cauchy-Schwarz inequality.

Remark. Theorem IV.I is still true if I belongs to Sobolev space
W1p(T). Indeed, CI(T) is dense in W1p(T) and Mil is a contraction on
U( T). (the definition of W d.p( T) is recalled next.)

THEOREM IV.2. Let there he I :( p < Xc, lor any IE U( T), the sequence
M,,f converges to I in U( T), and

Proof (l = 2). Let there bej; a function belonging to U( T), p ~ 1. For
any g in C l (T), since Mil is a contraction in U( T), we write

II MJ-III LJ'ITI :( II M l1 g - gil U'ITi + 211I- g 11fJ'1l)'

Using Theorem IV.I, this quantity is bounded by

Cpn 1:2 I IID4g ll uiTI +21If-gIIfJ'(l)'
I'll ~ I

which is not greater than (2 + C p)X;(n- 1/2, f) where .'R; is Peetre-X­
functional. Now, we use the well-known result for a Lipschitz-graph
domain (see H. Johnen and K. Cherer [9J):

So we obtain our main desired result.

Remark. The last result is natural and expected; indeed, the degree of
approximation corresponding to Bernstein-Kantorovic polynomials of
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degree n in U(O, I) is indicated by H. Berens and R. A. DeVore in [2]. It
is w p(f, n 1/2) for any functionl'in U(O,l).

Now let us introduce W d.p( T), Sobolev spaces of functions fE U( T) with
derivatives D "I' (in the distributional sense) belonging to U( T), 1q I ~ d,
endowed with the norm

Ilflld.p =( I II DllfiliFlTi) liP.

I11I d

PROPOSITION IV.3. The two assumptions are equivalent f(Jr p> I:

( I) f is in Wd.p ( T),

(2) II M,JII d.p is uniformly bounded.

Proof (l = 2). First, let us suppose (I) is true.
Dsing the density of the space fiJ( T) of infinitely differentiable functions

on T with compact support, in W d.p ( T), we show that the expression of
D"M,J, (3.4), falls for any f in W,l.p( T) if Iq I ~ d and Iq I ~ 11.

Then Holder inequality and binomial formula lead us to

n! (n+2)! . .
II D"M,JlluiTI ~ (n + Iq I)! (n _I q 1+ 2)! II D"! [Iu(l) ~ 211 D"! Iluln-

SO, II M,JII d.p ~ 211fll d.l'· This inequality is still true if p = I.
Conversely, let us suppose II M,Jlld.p is uniformly bounded. Since M,J

converges to f in L I (T), for Iq I ~ d, D"M,J converges to D'if in the dis­
tributional sense. Then, 9(T) being dense in L"(T), I/p+ l/q= 1, and
IIM,Jlld.1' being bounded, D"M,Jis a weak Cauchy sequence in U(T). So
its limit is in U( T).

COROLLARY. For any f in W d) T), p? I, the sequence M,J converges to
I in W d.p ( T),

Proof It is a consequence of Theorem III.I and of the first implication
of Proposition IV.3 for p? 1, via the density of 9( T) in W d .p ( T).
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